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In this tutorial we continue our program of clarifying chaos by examining the relationship
between chaotic and stochastic processes. To do this, we construct chaotic analogs of stochastic
processes, stochastic differential equations, and discuss estimation and prediction models. The
conclusion of this section is that from the composition of simple nonlinear periodic dynamical
systems arise chaotic dynamical systems, and from the time-series of chaotic solutions of finite-
difference and differential equations are formed chaotic processes, the analogs of stochastic
processes. Chaotic processes are formed from chaotic dynamical systems in at least two ways.
One is by the superposition of a large class of chaotic time-series. The second is through the
compression of the time-scale of a chaotic time-series. As stochastic processes that arise from
uniform random variables are not constructable, and chaotic processes are constructable, we
conclude that chaotic processes are primary and that stochastic processes are idealizations of
chaotic processes.

Also, we begin to explore the relationship between the prime numbers and the possible
role they may play in the formation of chaos.

1. Introduction

In this tutorial we examine the relationship
between chaotic and stochastic processes. In Sec. 1
we discuss the definition of stochastic and chaotic
processes and the construction of uniform random
variables. In Sec. 2 we show how chaotic variables
are constructed and how they are related to the
more familiar chaotic time-series. In Sec. 3 we con-
struct the chaotic analog of white noise, and the first
form of Brownian motion. In Sec. 4 we construct
the chaotic analog of conventional Brownian mo-
tion, and in Sec. 5 we construct chaotic analogs of
wide-sense stationary processes, Poisson, and other
processes. In Sec. 6, we show how chaotic analogs of

stochastic differential equations are solved and dis-
cuss the role of the Ito and Stratonovich stochastic
calculus. In Sec. 7, we look at chaotic processes as
driving forces. In Sec. 8 we discuss filtering and es-
timation briefly. In Sec. 9, we review the Theory
of Chaos, and in Sec. 10 we touch on the potential
role of prime numbers in chaos.

1.1. Definitions of chaotic and
stochastic processes

A stochastic process is defined as a one-parameter
family of random variables and a random variable is
defined as a measurable function. The construction
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of stochastic processes is reducible to the construc-
tion of random variables, and the construction of
random variables is reducible to the construction of
a uniform random variable.

Typically, when a sample of a uniform random
variable is needed, one uses a pseudo-random num-
ber generator (which, in fact, is a chaotic dynam-
ical system) to make a “random” selection. For
example, f(x) = x on the interval [0, 1] is a mea-
surable function that no one is going to want to
call a random variable even though it fits the for-
mal definition. However, by sampling this function
randomly, we are able to work with it as a random
variable in the sense of probability theory. This
is because when dealing with random variables, we
only deal with the range of the function, not its do-
main. This is due to the fact that it is the frequency
with which a function takes on its values that is im-
portant to probability theory, not precisely where
the time-order of these values are assumed by the
function. Because of this last point, the concept of
a probability distribution evolved.

A chaotic process may be defined as a one-
parameter family of measurable functions which
arise from chaotic dynamical systems. Contrary
to probability theory, in dynamics we are in-
terested in the time-order of the values of the
functions we encounter, and so the concept of
function is more appropriate than the concept of
a probability distribution. In order to discuss
both subjects without constantly translating from
functions to distributions and back, we will discuss
both subjects from the point of view of functions,
the language more appropriate to the study of dy-
namics. To do this, we will need to construct a
measurable function such that if we were to sample
it sequentially, at a very high sampling rate, rather
than randomly, we will still obtain a random sample
of the function’s values.

One more word about random selections. If
we are to firmly establish the connection between
chaotic and stochastic processes, the role of random
selections must be more closely examined. When
forming a realization of a stochastic process, for
each time, t, one must make a random selection
of a value of a measurable function, or present the
measurable function explicitly for evaluation. If
we were to insist on the measurable function being
presented for evaluation, presumably the inverse of
its distribution function would be presented and a

random evaluation would be made using a pseudo-
random number generator. But this introduces a
small measure of mystery into the function eval-
uation process. For example, how is this process
formally defined mathematically? It appears to be
a function composition between the inverse of the
distribution function and a pseudo-random number
generator on a computer such as RND in Basic. If
f is the inverse of a distribution function in ques-
tion, then f(RND(1)) is the composition. But the
exact definition of the function RND is hidden to
most of its users. Since RND is a periodic func-
tion, it has only a finite number of values, say N .
Successive calls to RND are thus equivalent to func-
tions evaluations at the successive points 1/N , 2/N ,
3/N, . . . , 1. Unless we randomize the timer func-
tion. In that case, the evaluation starts at some
offset from 1/N determined by the computer time
function in fractions of seconds of a day. After
adding back these details, the first evaluation of
the random variable in question can be formally
expressed as f(RND(1)(1/N + t0)) where t0 is a
function of the computer time stamp. But what
if we need another random variable with the same
distribution as f to get a realization of the process?
For example, what if it is a discrete process of inde-
pendent identically distributed random variables?
Now we must have a denumerable set of them. We
cannot formally use the same distribution function
f since this is not a different measurable function.
Typically, it is assumed that if the random selec-
tion is independent at each step, then we can use
f over again without any harm. But we are trying
to be exact and formal, thus we must use another
function besides f , otherwise everything is impre-
cise. At this point it is clear that actually present-
ing the denumerable set of independent, identically
distributed, random variables poses a practical, and
perhaps, also a formal problem. If we do not exhibit
the denumerable set, then we are only dealing with
stochastic processes in some ideal sense while we are
burying some interesting formalities in the process
of making a random selection. Any formal process
that will clear this up will necessarily lead to the
use of chaotic dynamical systems to construct ran-
dom variables and so lead us to the position that
stochastic processes are idealizations of what are, in
fact, chaotic processes. We defer the details to the
following sections.
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1.2. The problem of constructing
random variables as
measurable functions

In this section, we review the problem of construct-
ing a measurable function on the interval [0, 1]
which looks like a uniform random variable, i.e. the
graph of f on the interval [0, 1] must look like a
traditional white noise time series. The problem
that we discuss in this construction applies to ran-
dom variables in general, but we restrict our dis-
cussion to uniform random variables so that we are
not dealing in generalities. To carry out this discus-
sion some measure theory is required. We have kept
this to a minimum with the aid of Professor Morris
Hirsch who greatly simplified this discussion.

Ideally, we seek a measurable function de-
fined on the interval [0, 1] with the following
properties:

(1) It is Lesbegue measurable;
(2) It is bounded;
(3) It has a uniform distribution on every

subinterval;
(4) It is not a constant almost everywhere.

However, no such function exists. The proof
is as follows: Suppose, f is such a function. Then
by property 1 and 2 it is integrable in the sense of
Lesbegue. By property 3 we have

s−1
∫ t+s

t
f(x)dx =

∫ 1

0
f(x)dx = c (1)

and so ∫ t+s

t
(f(x)− c)dx = 0 (2)

for all s, s + t ∈ [0, 1], which implies1 f(x) = c
almost everywhere, in violation of 4. We must con-
clude that if a function can be constructed which we
would agree is a uniform random variable, it cannot
be a measurable function.

While a uniform random variable is not math-
ematically constructable as a measurable function,
a reasonable candidate can be proven to exist as a
nonmeasurable function on the interval [0, 1]. The
proof follows a standard argument using the axiom
of choice. Partition [0, 1] by the equivalence relation
x ∼ y if x− y ∈ Q, where Q is the rational. Select

one point from each equivalence class and form the
set P. For x ∈ P, the sets {x + Q} are the men-
tioned partition. Define f(x + r) = r for x ∈ P.
f is uniform in the sense that for every x ∈ P,
f(x+ Q) = Q, a dense set, while {x+ Q} is also a
dense set. Thus, f takes on every value of a set of
dense subset of [0, 1] equally often. However, f is
not measurable since f−1(0) = P.2

The nonconstructability of a uniform random
variable makes better sense than, at first, it seems.
If we could construct an idealized white noise
process, then Brownian motion could not be the in-
tegral of such a process since the integral would be
a constant time t. It is the imperfections in white
noise models, and nature, that give rise to forms of
Brownian motion. These imperfections are the re-
sult of our models being chaotic processes rather
than stochastic processes. Clearly, by reviewing
how stochastic processes are modeled on a computer
we conclude that a chaotic process is the math-
ematical approximation of a stochastic process.
Consequently, one form of Brownian motion can be
realized as the integral of a chaotic “noise” process,
even though it cannot be realized as the integral of
stochastic white noise.

2. The Chaotic Analog of a
Uniform Random Variable

In this section we construct the chaotic analog of
a uniform random variable. To do this, we need
a method of function evaluation that will give re-
sults similar to making a random selection. Since
a pseudo-random selection method can be based
on a modulo 1 multiplication scheme such as x →
2·xmod (1), [a chaotic dynamical system with Lya-
punov exponent log(2)] we might pursue the fol-
lowing line of development. Given a distribution
function F which is invertible, construct its inverse
G, fix the number n as a large integer, and form
the function G(Tn(x)) on the interval [0, 1], where
T (x) = 2 · xmod (1). If F (x) = x, a uniform dis-
tribution, then this results in the construction of
a measurable function on [0, 1] having a large, but
finite, number of discontinuities, and nearly satis-
fies condition 3. But this is clearly unsatisfactory
from a theoretical point of view. In particular, if a

1See [Royden, 1988, Chap. 5, Lemma 8].
2The inverse image of a measureable set, in this case the point 0, is not a measureable set, i.e. P is not measurable, thus f is
not measurable by the definition of measurable function.
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measurable function on [0, 1] is to be considered a
random variable it should not be possible to sam-
ple this function at a uniform sampling rate and
obtain a constant value. In fact, the average of ev-
ery large uniform sample should be the average of
the random variable. This is not true of G(Tn(x)).
We overcome this difficulty with the following
construction:

g(x) =
∞∑
n=0

anf(Tn(x)) (3)

where an are the terms of an absolutely convergent
series, f is a function on [0, 1] which is not constant
almost everywhere, and T is a measure preserving
multiplication mod 1 mapping of [0, 1] onto itself.
This series is uniformly and absolutely convergent.
If f(x) = x, we have the chaotic analog of a uni-
form random variable. In the case where T (x) =
2xmod (1), the number of discontinuities of the nth
term of this series is greater than 2n. Figure 1 is
the graph for this case where an = 0.165(19−n), and
T (x) = 16807.123 mod (1) and only 20 terms are
used. We use 16807.123 in this example so that
we do not have to resort to double precision to get
a similar result using a large number of terms of
x→ 2 · xmod (1). The choice of 16807 arises from
the fact that x → 16807 · xmod (2147483647) is
a good choice for a simple pseudo-random num-
ber generator, see [Brown & Chua, 1996]. The red,
nearly straight line across the figure is the integral
of g as a function of x. As g becomes more uniform,
this integral must approach a straight line whose
slope is the mean value of g on [0, 1].

By the following example, we conclude that a
random variable results from the superposition of
the dynamics of a large number of chaotic processes.

Example. Superposition of Chaotic Time-series.
The superposition of a discrete set of chaotic time-
series can be written (where we assume they are
evaluated at the time step l · h, for h a small incre-
ment of time) as

g(l · h) =
∞∑

k=−∞
akT

l(xk) (4)

where the xk are a dense set of initial conditions,
T is a chaotic map, and ak are arbitrary constants.
Assuming, ergodicity this could be considered to be
of the form

g(l · h) =
∞∑

k=−∞
akT

l(T k(x)) (5)

Fig. 1. The graph of g(x) of Eq. (4) where an = 0.165|n−19|

and T (x) = 16807.123 · xmod (1), and only 20 terms are
used. Graphing g gives a resulting image similar to making
a random selection of g.

for some fixed x. Rearranging this we get

g(l · h) =
∞∑

k=−∞
akT

k+l(x)) (6)

or

g(l · h) =
∞∑

k=−∞
akT

k(T l(x)) (7)

By fixing l, this can be considered a function of the
initial condition x,

g(x) =
∞∑

k=−∞
akT

k(x) (8)

Another discrete form is

g(x) =
∞∑
k=1

akT
k(x) (9)

If we choose the logistic map as T we get

g(x) =
∞∑
k=1

ak sin2(2k2πx) (10)

With the left unilateral binary shift we get

g(x) =
∞∑
k=1

ak{2kx} (11)
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and for the map xn+1 = 2x2
n − 1 we get

g(x) =
∞∑
k=1

ak cos(2k2πx) (12)

The coefficients, ak have the role of arbitrary
constants as occurring in the theory of ordinary
differential equations to be determined by measure-
ments. For chaotic maps with positive Lyapunov
exponents, as these example have, such series can
define functions which are C∞, continuous, con-
tinuous and nowhere differentiable, and nowhere
continuous.

Another variation of Eq. (6) is

g(x, l · h) =
∞∑

k=−∞
ak−lT

k(x) (13)

which gives a moving average representation to be
encountered later.

As implied by the above examples, Eq. (3) can-
not be the solution of any finite system of ODEs
since the arbitrary constants, an form an infinite
set.

2.1. Generalized chaotic variables

The construction of Eq. (3) can be generalized:

g(x) =
∞∑
n=0

anf(Tn(x)) (14)

where Tn : [0, 1] → [0, 1], are different dynamical
systems, at least some, but not necessarily all, of
which are chaotic, and the an are the terms of an
abolutely convergent series. If f is the inverse of
a Gaussian distribution function, then this gives a
generalization of a Gaussianly distributed chaotic
variable. A continuous version of this construction
is

g(x) =

∫ ∞
0

a(s)f(Ts(x))ds

2.2. Chaotic variables, chaotic
time-series, and realizations of
chaotic or stochastic processes

One difference between a random variable and a re-
alization of a independent, identically distributed
(iid) stochastic process is that a random variable is
defined formally on a measure space, such as [0, 1],
of measure 1, and a realization of a iid stochas-
tic process is defined for all time. The stochastic

properties of a random variable must also exist for
realizations of iid stochastic processes. Similar dis-
tinctions hold for chaotic variables and realizations
of chaotic processes. With these distinctions made,
we proceed to the main discussion of this section.

An important distinction must be made be-
tween chaotic variables, and later chaotic processes,
and solutions of chaotic difference and differential
equations. We conventionally refer to the latter
as chaotic time-series. Chaotic variables arise from
the superposition of a large number of chaotic time-
series. We recognize that this distinction is not yet
precise, but it is adequately descriptive.

Chaotic time-series are the building blocks, and
thus the source, of chaotic variables, processes, and,
we argue, stochastic processes. Chaotic time-series
lead to chaotic variables and random variables in
at least two ways. The preceding constructions of
chaotic variables is one route. A second route is
a result of the ratio of the sampling rate to the
time-scale of the series. To make this point clear,
we graph a chaotic time-series using three sampling
rates and compare the integral of the squares of
the sampled points for each of the three techniques.
Figure 2 shows the three graphs. In each graph, the
red curve is the plot of the average of the sum of
square of the time-series samples. This is essentially
a simple integration scheme. For a highly oscillating
function we have the approximate relationship:

∫ t

0
g(x)kdx ≈ ck · t (15)

for k = 2, as was found in Fig. 1. In Fig. 2(a),
the time-series is sampled at a rate sufficient to re-
veal its true form, i.e. sampling at any higher rate
provides no new information. The integral of the
square is, therefore, highly variable. In Fig. 2(b)
the time-scale is compressed and the sampling rate
held constant so that the total number of points in
the graphs are constant. The integral of the square
reflects the increasing degree of complexity in the
time-series. In Fig. 2(c), the time-series appears al-
most as complex as Fig. 1, and the integral reflects
this increase in variability of the time-series as it
converges toward a straight line.

This example shows that a chaotic time-series
may be sampled in such a way as to begin to appear
stochastic. Alternatively, if a chaotic time-series
has a very high oscillation rate it can approach a
realization of a chaotic or stochastic variable in its
appearance. For example, this can happen when
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(a)

(b)

(c)

Fig. 2. (a) In this figure we graph the time-series of one com-
ponent of the solution of a twist-and-flip map equation having
gyration conductance function log(0.69 · exp(sin(2 · π · r))/r)
for r ≤ 1 and 5 for r > 1, but in (b) we have compressed the
time-scale by a factor of 150, and in (c) the time-scale is now
compressed by a factor of 700.

the system is time compressed as when one samples
the time-one map of a chaotic time-series in place of
the time-series itself. This point-of-view provides a
physical interpretation of the Smale–Birkhoff the-
orem and illustrates the difficulty in distinguish-
ing between chaotic time-series and realizations of
chaotic or stochastic processes. It also explains why
if the function sin(t) is sampled in exponential time,
it will produce a chaotic sequence as in the logistic
equation.

We note that Eq. (15), for k = 2, is not a suffi-
cient condition to identify a realization of a chaotic
or stochastic process as demonstrated by the follow-
ing example:

∫ x

0
sin2(λs)ds ≈ c · x (16)

for large λ. This function has only one very high fre-
quency and a uniform sampling scheme will reveal
that this function is not a realization of a chaotic
or stochastic process.

A function having a large number of frequen-
cies and which satisfies Eq. (15) for k = 2 is also
not necessarily a realization of a chaotic or stochas-
tic process. What is needed is a chaotic range of
frequencies and/or a chaotic range of amplitudes
combined with satisfying Eq. (15) for k = 2 for
a measurable function of x to be a realization of
a chaotic or stochastic process. Thus, while not
defining chaotic or stochastic phenomena, Eq. (15)
for k = 2 can be used to distinguish between chaotic
time-series and realizations of chaotic and stochas-
tic processes. However, if Eq. (15) holds for a large
number of integer values of k, then it may be suffi-
cient to define a chaotic or stochastic process. This
is still an open question.

A conclusion of this example is that the com-
plete distinction between realizations of chaotic or
stochastic processes and chaotic time-series is re-
duced to the ratio of the sampling rate to the time
scales: The limit of a chaotic time-series, as we com-
press the time-scale and hold the sampling rate con-
stant, appears to be a realization of a stochastic or
chaotic process.

Also, Fig. 1 illustrates that the limit of a su-
perposition of chaotic time-series as the number of
time-series approaches infinity, where the time-scale
and sampling rates are held constant, is a chaotic
variable which cannot be distinguished from a ran-
dom variable by any measurement process.
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This suggests that there is a duality, when con-
sidering chaotic dynamical systems, between com-
pression of the time-scale and an increase in the
number of systems: The dynamical features of a
single chaotic system under time-scale compression
can be equivalent to the combined dynamics of a
large ensemble of chaotic dynamical systems con-
sidered in uncompressed time.

This duality concept can be further illustrated.
Consider the logistic equation x → 4x(1 − x). Its
solution is xn = sin2(2π2nθ0). Thus the logistic
time-series in real time is equivalent to sampling
a periodic process in exponential time, t = 2n, or
the superposition of an uncountable number of pe-
riodic time-series, a Fourier transform sampled in
real time. A chaotic variable can be equivalent to a
chaotic time-series sampled in exponential time or
to the superposition of an infinite number of chaotic
time-series sampled in real time. Thus the nature
of exponential time sampling is to complexify dy-
namics in the same way as multiplying the number
of dynamical systems in real time.

A real-world example provides an interesting
consequence of this duality. Using a uniform sam-
pling rate to measure a periodic signal source that is
initially accelerating at an exponential rate results
in obtaining a chaotic sample of the signal. How-
ever, as the velocity of the signal source approaches
the speed of light, order is restored.

3. Chaotic Analog of
Stochastic Processes

Starting from Eq. (3) we may form an analog of a
stochastic process as follows:

g(x, t) = gt(x) =
∞∑
n=0

anf(Tn(x+ t)) (17)

If f is the inverse of a Gaussian distribution, then
the process is the chaotic analog of a Gaussian
stochastic process. For any choice of x, this gives a
Gaussian process in t, and vice versa, for T , a mea-
sure preserving chaotic map of the interval [0, 1].
For any choice of the sequence an, so long as the
sum of an converges, we can obtain a mean zero
and variance 1 process by normalizing g(x, t) for
t = 0.

As a result, the entire process has these fea-
tures. This works because g is a function of x + t.

Fig. 3. The covariance of gt(x) and gs(x) of Eq. (9), where
an = 0.165n, t = 0.5, 0 < s < 1, and T (x) = {229.1 · x}.
60 terms are used, and f(x) = tan(2 · x− 1). The deviations
from white noise covariance is an important feature in chaotic
processes.

By choosing

g(x, t) = gt(x) =
∞∑
n=0

anf(Tn(x exp(t))) (18)

we obtain another chaotic process. Figure 3 is a
graph representing the degree of independence of
gs+t and gs, for Eq. (18). The lack of correlation
between the process at s and t is due to the sensi-
tive dependence on initial conditions of the chaotic
dynamical system used in the construction. In par-
ticular the vertical axis is the covariance:

h(s) =

∫ 1

0
g0.5(x)gs(x)dx (19)

where s ranges from 0 to 1. If we could graph an
ideal white noise stochastic process, we would not
see the small irregularities that we see in Fig. 3.
However, the irregularities in Fig. 3 are to be ex-
pected in chaotic processes. They represent chaotic
resonance that can appear when chaotic dynamics
reinforce one another in unpredictable ways.

If in Eq. (17), f is the inverse of a Gaussian
distribution function, we get the analog of a Gaus-
sian white-noise chaotic process. For any t, and for
fixed x, this is a function whose absolute value is
measurable, and is thus integrable. The integral∫ t

0
gs(x)ds (20)

could be considered the chaotic analog of Brown-
ian motion, if Brownian motion were actually the
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integral of white noise. As such, it is smoother
than stochastic Brownian motion in that it is
differentiable.

In analogy with stochastic processes we will re-
fer to Eq. (17) as W (x, t) and Eq. (20) as B0(x, t)
when f is the inverse of a Gaussian distribution
function. The dependence on x, the “random” vari-
able, is shown explicitly to distinguish it from its
stochastic analog.

We do not consider Eq. (20) to be the final word
on the chaotic analog of Brownian motion, hence
we label it B0(x, t) and have reserved the notation
B(x, t) for a form of Brownian motion to be dis-
cussed in the next section. There we specifically
examine Brownian motion as it is used in stochas-
tic processes and, while Brownian motion models
can be constructed by using coarse approximations
of the integral of white noise, this approximation
does not converge to Brownian motion in the limit.
Hence, there is something missing when we start
with the discrete theory of Brownian motion and
try to pass to the limit to obtain continuous Brow-
nian motion.

We conclude by noting that there are as many
chaotic processes as one may imagine. For example,
in analogy with Eqs. (17) and (18) we may consider
the processes,

g(x, t) = gt(x) =
∞∑
n=0

anf(Tn(x(1 + t2))) (21)

or

g(x, t) = gt(x) =
∞∑
n=0

anhn(t)f(Tn(x)) (22)

4. Chaotic Analog of Brownian Motion

Constructing Brownian motion directly without
constructing white noise still requires constructing
discrete white noise, and thus a uniform random
variable, hence it is not constructable as a mea-
surable process. However, if we assume that white
noise can be constructed, then, as we have seen,
Brownian motion cannot be the integral of white
noise. In order to understand the conventionally un-
derstood relationship of Brownian motion to white
noise, we examine a typical construction, which
assumes the existence of a uniform random vari-
able, such as that found in [Karlin & Taylor, 1975,
Chap. 7]. This construction depends on the con-
struction of a continuous function that is nowhere

Fig. 4. Ten sample paths for Brownian motion model con-
structed from the Schauder functions following [Karlin &
Taylor, 1973] where a random number generator is used to
obtain the Gaussian “random” samples.

differentiable. Such constructions are a subject
of classical analysis that go back to Weierstrass.
The construction of Karlin and Taylor starts with
the Haar functions, derives the Schauder functions,
S(t), and then Brownian motion. Given S(t), the
representation from Karlin and Taylor of B(t) is

B(t) =
∞∑
1

ξkSk(t) (23)

where the ξk are independent mean zero, vari-
ance one, Gaussian random variables. In Fig. 4
we show the paths of ten sample functions using
the Schauder function construction of Brownian
motion.

We clarify the exposition of Karlin and Taylor
with the observation that all of the Schauder func-
tions can be obtained from the single function:

h(t) = 1− |2{t} − 1|

by iteration of a chaotic map. Here {t} is the
fractional part of t. Specifically, by considering the
iterates of h under the unilateral shift T : t→ {2·t}
we clarify their presentation to get

B(x, t) = W (x, t0) · t+
∞∑
k=1

Wk(x, t) ·
h(T k−1(t))

2(k/2)−1

(BRN)
where

Wk(x, t) =
2k−1∑
j=1

W (x, tj)χj(t)
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W (x, t) is a Gaussian white noise process, and χj(t)
is the indicator function for the interval [2j−1, 2j ].
We note that in the construction found in [Karlin
& Taylor, 1975], Wk → W in the L1 sense, and
that W , in their presentation, must be thought of
as ideal white noise.

Our rearrangement of the classical Brownian
motion formula suggests that it is possible to draw
a closer relationship to chaos if we can construct the
indicator functions from dynamical systems. This
can be done as follows: By the formula f ∨g we will
mean the maximum of f and g. Next, let f(t) =
sgn(sin(2πt)), and fj(t) = f(T j(t)) = fj−1(T (t)),
where T (t) = {2 · t}. Finally, define iteratively

fj+1,k(t)=(−1)(k−1) ·fj+1(t)·(fj,1+kmod(2j )(t) ∨ 0) .

(24)
With this dynamical system formulation we

have

Wk(x, t) =
2k−1∑
j=1

W (x, T j(t0))fj,k(t) . (25)

This rearrangement of B shows that the relation-
ship between W and B is neither one of integral or
derivative.

If we define W in Eq. (25) by Eq. (17), Brow-
nian motion is realized as an infinite dimensional
chaotic process.

In summary, Fig. 1 shows that as g in Eqs. (3)
and (17) becomes more uniform, the integral of
g approaches a straight line whose slope is the
mean value of g. If we use Eq. (17) to construct
a mean zero Gaussian process, then this integral
must be nearly zero. The more perfectly we con-
struct our mean zero Gaussian chaotic variable, the
more closely its integral must approach zero. In
the limit of this process, Brownian motion, as the
integral of white noise, must cease altogether. If
we choose to think of Brownian motion as the in-
tegral of a Gaussian chaotic white noise processes,
then we obtain the function B0(x, t), which is dif-
ferentiable. As the chaotic processes become more
uniform, B0(x, t) → 0 and to the extent they are
less uniform, B0(x, t) models conventional Brown-
ian motion. We also find that the process B(x, t)
is constructable as a chaotic process and is thus
derivable from chaotic dynamics as well. However,
B(x, t) and B0(x, t) only coincide in appearance for
a limited range of chaotic processes.

Thus we have the chaotic analog of Brownian
motion in Eq. (BRN) and Eq. (20) if we use Eq. (17)
for our white noise process.

We emphasize at this point that we are led
to this model of chaotic white noise by imposing
the restriction that its integral, B0(x, t), must pro-
vide a credible candidate for Brownian motion if
it is approximated with a coarse numerical integra-
tion technique, and that it coincides in appearance
with B(x, t) in accordance with conventional prac-
tice. Once we have made a commitment to this
model, we convey with it the implications that can
be derived from using the model. Among these im-
plications is found, see Fig. 3, the phenomena of
chaotic resonance, which may be the chaotic ana-
log of stochastic resonance, and will be discussed in
the next paragraph. A second phenomena, perhaps
more unexpected, is the phenomena we are calling
chaotic catastrophe which is unrelated to what is
commonly known as catastrophe theory. This is dis-
cussed in the section on financial markets. Chaotic
catastrophe occurs when Brownian motion transi-
tions from B0 to B. A third consequence of this
theory is that if we start with a coarse model of a
chaotic analog of white noise, B0(x, t) is not con-
stant. If we then add more chaotic noise to our
model to force it to approach a uniform Gaussian
white noise, then B0(x, t) → 0 and the effects of
noise are cancelled out, essentially by adding noise
rather than removing it. Fourth, the determination
of whether the Ito or Stratonovich theory applies
can be made by determining whether the forces in-
volved in a process are primarily frequency chaotic,
leading to B0(x, t), or amplitude chaotic, leading to
B(x, t). When both are involved, a hybrid theory
may be appropriate.

Stochastic resonance is described as a phenom-
ena whereby the presence of noise actually enhances
a signal rather than obscures it. Chaotic resonance
is the coincidental correlation that appear to be
random in occurrence, but which enable complex
phenomena to reinforce one another in a manner
that might enable the emergence of new species
or other dynamical events which have an order to
them, i.e. are not formless and “random”. The van-
ishing of B0 as noise becomes more uniform may
connect these two ideas. When B0 exists, it is due
to a lack of uniformity in a noise process, thus there
must exist chaotic resonance. As B0 → 0 during a
period of increasing noise, or decreasing chaotic res-
onance, a signal hidden in the noise will also appear
just as the integral of a uniform process in Fig. 1
converges to a constant multiplied times time. Thus
increasing noise, i.e. making it more uniform, looks
like stochastic resonance as described earlier.
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Thus we see that chaos provides two mecha-
nisms for what might be called emergence. First,
through the presence of some level of chaotic res-
onance complex order appears or emerges; second
from the total absence of chaotic resonance, B0 → 0
and a hidden dynamical system may emerge from
an increase in the level of uniformity of noise.

The second form of emergence may have a
bearing on the natural neural noise in the human
brain. For example, particular signals may selec-
tively appear as indications of specific thought or
other cognitive processes when the level of neural
noise is made more uniform according to some de-
riving force. Thus, cognitive processes may appear
as a result of an increase in the uniformity of neu-
ral noise. Also, cognitive processes may appear as a
result of a decrease in the level of uniformity of neu-
ral noise as this will give rise to chaotic resonance.
In both cases, a robust source of neural noise may
be the ideal medium for the generation of cogni-
tive processes. Each of these processes is linked to
the other through B0. As B0 → 0 the first pro-
cess is engaged, as B0 → B, the second process
is engaged.

4.1. Amplitude chaos and
Brownian motion

The graphs of the Schauder functions, Sk(t), in
Eq. (23) are little tents. Each function used is
nonzero on an interval of length 1/2k and zero else-
where. By grouping these terms by the length of
the domain where the function is nonzero we ob-
tain sums of the form

2k∑
j=1

h(tj)Sj(t) . (26)

If, instead of tent shaped graphs, we used functions
whose graphs were like 1 − cos2(2π · 2kt) over the
same interval we would obtain a segment of a so-
lution to a differential equation which has ampli-
tude chaos much like Example 2, Sec. 5 of [Brown
& Chua, 1998]. Solutions to such chaotic ampli-
tude equations all have the same frequency but with
each segment of the solution over one period of the
forcing function having a different amplitude, the
sequence of amplitudes being chaotic. The situa-
tion is much like the solutions of the chaotic Duffing
equation, except that only the amplitude changes
chaotically instead of both amplitude and frequency
changing.

The net result of this discussion and that of
white noise is that classical Brownian motion and
white noise can be realized as the superposition of
an infinite set of time-series solutions from chaotic
differential equations having amplitude chaos, in
the case of Brownian motion, and frequency chaos
in the case of white noise.

5. Other Stochastic Processes

In this section we construct analogs of continuous,
wide-sense stationary, Poisson, and other processes.

5.1. Continuous chaotic processes

To this point we have constructed chaotic analogs of
stochastic processes which contain the assumed dis-
continuity features of stochastic processes. In this
section, we construct continuous analogs and note
that from a measurement point of view, it may be
impossible to detect the difference between contin-
uous and nowhere continuous stochastic or chaotic
processes.

As a special case of Eq. (17) we have

gt(x) =
∞∑
n=0

an sin(2n · 2π(x+ t)) (27)

where we choose an · 2n > 1. This series converges
uniformly and is thus continuous, but is not differ-
entiable term by term. If we only use a finite num-
ber of terms, the function has all derivatives and
is periodic. However, if we use a very large num-
ber of terms, then it begins to resemble white noise.
Also, when we use only a finite number of terms, it
must be the solution of a homogeneous linear dif-
ferential equation of very high order. If we use an
infinite number of terms, it must solve, in a formal
sense, a second-order hyperbolic linear partial dif-
ferential equation having as a boundary condition a
chaotic variable. All of these features demonstrate
that there may be a very fine line between periodic
and nonchaotic phenomena and chaotic or stochas-
tic processes. If we are given a sampling rate, it
is always possible to use a large enough number of
terms to assure that the sampling rate will fail to
reveal that the equation is periodic and not classical
white noise.

With a small modification, the periodicity can
be abolished. For example we may use:

gt(x) =
∞∑
n=0

an sin(2.1n · 2π(x+ t)) (28)



Chaotic and Stochastic Processes, Chaotic Resonance, and Number Theory 795

A further property of these processes is something
analogous to sensitive dependence on initial con-
ditions. Ideally this property should read: There
exists a number τ such that given a point x0 and
a neighborhood of the point, Ux0 , there is another
point x ∈ Ux0 with |gt(x) − gt(x0)| > τ , for almost
all t. While this cannot be true for a continuous
function, it can be true in practical circumstances
when the sampling rate, for a fixed choice of the
an, cannot confirm or deny the continuity of the
function. Thus, relative to a sampling rate, it can
happen that the function may as well not be con-
tinuous. We conclude that relative to a given mea-
suring frequency it may be impossible to decide if
a process is stochastic and discontinuous or chaotic
and continuous. Further, given any measurement
process, we may always construct a finite dimen-
sional, infinitely differentiable chaotic process for
which it is impossible to distinguish said process
from an infinite dimensional, totally discontinuous
stochastic process. For example, it is possible to
construct a twist-and-flip map where the integral
curves are diamond shaped, and only the amplitude
is chaotic, thus allowing us to mimic Brownian mo-
tion exactly with a superposition of a finite number
of twist-and-flip chaotic processes.

5.2. Wide-sense stationary
processes and chaos

Every measure-preserving mapping of a mea-
sure space defines a stationary stochastic process.
Conversely, every stationary processes can be
formally understood as arising from measure-
preserving dynamical systems. This is the subject
of ergodic theory. A close review of the proof of
this fact in [Doob, 1953], reveals that this line of
thought, while accurate, could benefit from a more
direct example of how chaotic and stationary pro-
cesses overlap.

The most general wide-sense real-valued sta-
tionary process can be put into the form

x(t) =
k∑
j=1

uj cos(2πλjt) + vj sin(2πλjt)

where uj, vj are mutually orthogonal real random
variables, or can be approximated arbitrarily close
by a process of this form, [Doob, 1953], where the
λj depend on the process.

If we take uj = aj sin(2π2jx), vj =
aj cos(2π2jx), and λj = 2j , then we have the

chaotic process

g(x, t) =
k∑
j=1

an sin(2π2j(x+ t))

discussed earlier. By our choice of the sequence an,
and the frequencies λj we can make this process as
chaotic as we wish.

In general, we may construct the wide-sense
stationary process

∞∑
j=−∞

ajfj(x) exp(2πiλjt)

as a chaotic process by choosing the fj
appropriately.

5.3. Poisson processes

The basic construction of a Poisson process from
chaotic processes is illustrated by the following
example:

f(x, t) =
∞∑
n=0

αnfn(x, t) (29)

where

fn(x, t) = 0.5 · (1 + sgn(t− gn(x)))

and

gn(x) =
n∑
k=1

βkh(T k(x))

T is a chaotic map of the unit interval, αn, βn are
constants chosen to fit the data, and h is a properly
chosen function. For example, one choice for h is
exp(−λ · u)

5.4. Martingale and Markov processes

In this section, we will be using conventional ter-
minology found in leading textbooks on stochastic
processes, particularly [Doob, 1953].

In order to define a Martingale we need the
notion of conditional expectation. Given two
measurable functions, f , g on [0, 1], we define the
conditional expectation of f , given that g(x) ∈ [a, b]
by the average value of f over the interval g−1[a, b],
and we write this as

E(f |g(x)∈ [a, b])=
1

µ(g−1([a, b]))

∫
g−1([a,b])

f(x)dx

where µ(·) may be thought of as Lesbegue measure.



796 R. Brown & L. O. Chua

In ergodic theory, conditional expectation is de-
fined with respect to a partition of the domain of a
measurable function as follows: Let P = {Ei} be a
partition of [0, 1]. Then

E(f |P) =
∑
i

1

µ(Ei)
·
∫
Ei

f(x)dx · χEi(x) .

The conditional expectation of f takes on the av-
erage value of f over each element of the partition,
Ei. If we start with a partition of the range of g and
take its inverse under g, let the granularity of the
partition increase indefinitely and apply this defini-
tion, we obtain the familiar definition of conditional
expectation found in elementary texts on probabil-
ity theory.

Given the definition of conditional expectation,
a stochastic process ξt, is a martingale, if each
random variable has a finite mean value, and if
t1 < t2 < · · · < tn < t then

E(ξt|ξt1 , . . . , ξtn) = ξtn . (30)

In our terminology, the random variables ξt are
measurable functions, such as g(x, t) of Eq. (17),
on [0, 1], and the implications of this condition is
just a routine statement about a series of nested
partitions of [0, 1]. The most common example of a
Martingale is the sum of a sequence of independent
random variables having mean zero. This equates
to a sum of chaotic functions of the form g(x, tn) of
Eq. (17).

The definition of a Markov process is parallel to
that of a Martingale with the notion of conditional
probability replacing that of conditional expecta-
tion. The conditional probability of a set B given a
partition, P, is defined as E(χB|P). As with a Mar-
tingale, there is nothing special about this process
that is not already discussed. A sum of indepen-
dent random variables, or chaotic functions, defines
a Markov process.

5.5. Levy processes

A Levy process can be decomposed into a sum
of a composite Poisson, a translation, and a
Brownian motion process. As these processes
are constructable from chaotic processes, there is
nothing further needed to construct a Levy pro-
cess from chaotic processes than has already been
discussed.

6. Stochastic Differential Equations
and the Stochastic Calculus

In this section we examine chaotic analogs of
stochastic differential equations and the role of the
stochastic calculus.

6.1. Chaotic analog of stochastic
differential equations

In direct analogy with the theory of stochastic dy-
namical systems, we have the systems, see [Karlin
& Taylor, 1981],

dY (t)

dt
= h(t, Y (t),W (t, x)) (31)

dY (t)

dt
= h(t, Y (t)) +W (t, x) (32)

dY (t)

dt
= −βY (t) +W (t, x) , β > 0 (33)

dY (t)

dt
= −µ(Y (t), t) + σ(Y (t), t)

dB0(t, x)

dt
(34)

dY (t) = −µ(Y (t), t) + σ(Y (t), t)dB(t, x) (35)

Equation (33) is the analog of the Ornstein–
Uhlenbeck equation, and Eq. (34) is the analog of
the standard stochastic differential equation model
for a diffusion processes. Equation (35) is needed
in the theory of chaotic processes, just as in the
case of stochastic processes, to be able to handle
the chaotic process B(x, t), which is nowhere dif-
ferentiable.

For chaotic processes, the integral∫ t

0
f(s)dB0(s, x) (36)

exists. This equation has the representation∫ t

0
f(s)W (s, x)ds (37)

This implies that Eq. (34), as a chaotic process, can
be written as

dY (t)

dt
= −µ(Y (t), t) + σ(Y (t), t)W (t, x) . (38)
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We may construct g of Eq. (17) so that, to a very
close approximation,∫ 1

0
W (t, x)W (s, x)dx

=
∫ 1

0
W (t, x)2dx , for s = t , (39)

and nearly zero elsewhere, and∫ 1

0
W (t, x)2dx ≈ 1 . (40)

Also, ∫ t

0
W (s, x)2ds ≈ c · t . (41)

The existence and uniqueness theory for
Eqs. (31)–(34) can be found in [Coddington &
Levinson, 1955]. In general, there exists solutions
of these equations. When the right-hand sides are
Lipschitz, these solutions are unique.

Integration of stochastic differential equations
may proceed through two separate paths, result-
ing in very different solutions. The theory of
Stratonovich requires that the rules of calculus must
hold for these equations. The theory of Ito holds
that Martingales should be preserved through inte-
gration even if it means that the rules of calculus
fail. See [Karlin & Taylor, 1981] for a complete
discussion.

The rules of calculus hold for chaotic processes
that involve B0, thus the solution of Eqs. (31)–(34)
are in agreement with the Stratonovich stochas-
tic calculus. However, processes involving B(x, t)
are solved using the Ito theory. Thus, in the the-
ory of chaotic processes, the Ito theory and the
Stratonovich theory are both required.

6.2. Example: Solving chaotic
analogs of stochastic
differential equations

With the above results, Eq. (33), the Ornstein–
Uhlenbeck process, has the same solution as if it
were treated as a stochastic ODE, with the excep-
tion that the solution involves B0(x, t) instead of
B(x, t). All chaotic process equations which do not
involve the Ito calculus, and thus involve B0 instead
of B, are solved in the same way as their stochastic
analogs. For Eq. (33) we have the solution,

Y (x, t)=B0(x, t)−β
∫ t

0
exp(−β(t−τ))B0(x, τ)dτ .

(42)

Expectations and variances are easily computed by
using the formulae

E[Y (x, t)] =

∫ 1

0
Y (x, t)dx (43)

E[Y (x, t)Y (x, s)] =

∫ 1

0
Y (x, t)Y (x, s)dx (44)

The Growth Equation is a good example of
the differences between the Ito solution and the
S-solution of a stochastic differential equation.
Our construction must necessarily agree with the
S-solution if we use B0 instead of B. We proceed
as follows: We rewrite the growth equation

dY = Y dB0 (45)

as

dY

dt
= Y (x, t)

dB0

dt
= Y (x, t)W (x, t) . (46)

By applying the usual rules of calculus we have

Y (x, t) = C(x) · exp(B0(x, t)) . (47)

The Ito solution is

Y (x, t) = C(x) · exp

(
B(x, t)− t

2

)
. (48)

These two solutions of Eq. (45) are quite different
depending on the underlying dynamics.

6.3. Chaos and the financial markets

The existence of the chaotic processes B0(x, t) and
B(x, t) lead to the possibility of processes being
formed which coincide with B0 over some time
spans and with B over others. For example, the
solution of the following equation

h(x, t) = 0.5(1 + sgn(sin(ωt))) ·B0(x, t)

+ 0.5(1 − sgn(sin(ωt))) ·B(x, t) (49)

transitions between these two processes on a peri-
odic basis when ω is an integer.

This possibility may have significant conse-
quences for the financial analysis of derivative
securities. Presently, market analysts use the
Black–Scholes option pricing model for derivative
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pricing. Black–Scholes in turn assumes that the un-
derlying processes are B and not B0. This leads
to the use of the Ito transformation law in the
treatment of derivative security pricing equations.
However, if the relevant processes involve B0, then
errors in speculating on derivative securities may
result that lead to disastrous consequences. The
prospect of this happening leads us to define chaotic
catastrophe.

Definition. A chaotic catastrophe occurs when a
chaotic process involving B0 transitions to one that
also involves B, or vice versa.

This definition allows for the situation where
B0 and B may be simultaneously present although
this may seem ambiguous. This is called a catastro-
phe because the solution of a given problem such
as the growth equation, Eq. (45), will transition
from Eq. (47) to Eq. (48) without warning. The
solution given by Eq. (47) is differentiable almost
everywhere whereas the solution given by Eq. (48)
is nowhere differentiable as-well-as having a factor
of exp(−t/2) not present in Eq. (47). Betting on
the solution of Eq. (45) being Eq. (48), when in fact
the solution, over a short period of time, is actually
Eq. (47) could result in a significant loss.

This observation underscores the need for
methods of analysis to distinguish between dynam-
ical systems involving B0 and those involving B.
This need is made more clear by the fact that over
certain approximation ranges, using coarse approx-
imation methods, B and B0 appear to be the same.

7. Stochastic Chaos as a
Driving Force

Consider the chaotic process given by

s(x, t) =
∞∑
n=0

an sin(bn · (x+ t)) (50)

where b > 1, and the an chosen so that∫ y

0
s(x, t)2dx ≈ c(t) · y . (51)

If we truncate this series after any finite number of
terms, it is infinitely differentiable, and, if b is an in-
teger, the truncated series is periodic while Eq. (51)
is still true. That is,

s(x, t) =
N∑
n=0

an sin(bn · (x+ t)) (52)

Fig. 5. The graph of s(0.5, t), Eq. (42), as a function of t,
where T (x) = {16807 · x}, an = 0.995n , and ten terms are
used.

is not distinguishable from a stochastic process for
large N , say N > 10. This is due to the sensitive
dependence on sampling that characterized chaotic
processes, see Fig. 5. We may use this as a driving
force in a second-order ODE such as the Duffing
equation:

ÿ + αẏ + y3 =
N∑
n=0

an sin(bn · (x+ t)) (53)

which can be expressed as an autonomous equa-
tion in three dimensions. If α = 0.05, a0 = 7.5,
and an = 0 for n > 0 this equation is the well-
known Duffing equation having the Ueda Japanese
attractor shown in Fig. 6(a).

When an 6= 0, b an integer, this is in a
practical sense equivalent to the Duffing equation
having a stochastic forcing term. But clearly, this
is just a very complex periodic forcing term that re-
sembles a noise process, as Fig. 5 shows. The first
return map for the solution of Eq. (53) exists on
R2 × S1. A hyperbolic fixed point can be located
near (1.04, 0.58) and the first return map generates
a strange attractor, Fig. 6(b). Due to monitor reso-
lution limitations, this attractor does not show the
fine detail seen in Fig. 6(a). However, the attractor
is what we would expect to see from a system hav-
ing a stochastic forcing term in that the attractor is
diffusing under the influence of the chaotic forcing
process.
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(a)

(b)

Fig. 6. The strange attractor for Eq. (53) where the forcing term is (a) 7.5 sin(t). A hyperbolic fixed point can be found
near (1.04, 0.595); (b) that of Fig. 5, Eq. (42). A hyperbolic fixed point can be found near (1.00067, 0.50099).
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8. Filtering of Chaotic Processes

The chaotic analog of the conventional Kalman
filter setting is

Y (x, tn+1) = ΦY (x, tn) +W1(x, tn) (54)

ψn = θY (x, tn) +W2(x, tn) (55)

where Wi are chaotic processes that are analogs
of Gaussian white noise, Φ, θ are matrices, and
Y (x, tn) is a vector. Clearly, when these equations
are modeled on a computer, the relevant noise pro-
cesses are chaotic, rather than stochastic. The ad-
vantage of approaching this problem as a chaotic
process problem is that, in reality, white noise
does not exist. Hence, the noise processes must
deviate from white noise in some fashion. These
deviations may be taken into consideration in the
estimation process, thus providing additional infor-
mation about the dynamics that will lead to a better
estimation formula. By assuming Gaussian white
noise and proceeding with the use of conditional
expectations along conventional lines, valuable in-
formation may be omitted. A better approach is
as follows. First, perform a spectral analysis of
the noise. From this analysis, and the facts of the
physical environment, the likely chaotic dynamics
involved may be determined. As we have noted,
white noise can be constructed from superposition
of a wide range of chaotic dynamics, as was the case
from Brownian motion and Poisson processes. Each
of these constructions will have a deviation from ac-
tual white noise that is peculiar to the situation. If
we derive the chaotic dynamics involved and use
a superposition of these dynamics to formulate our
dynamical system estimation method, we will likely
obtain a better estimation process as it will be much
closer to reality than the assumption of white noise
will provide.

This theory does not diminish the significance
of stochastic processes. Stochastic process the-
ory is appropriate when the number and variety
of chaotic dynamical systems that are present in
a superposition processes are so large that there
is no practical value to be gained from consider-
ing the chaotic dynamics separately. It is likely
however, that there are many problems that have
been traditionally treated with stochastic process
methods that are likely better treated with chaotic
process methods.

9. Theory of Chaos

9.1. Stochastic processes
arise from chaos

Every chaotic process we have discussed formally
fits the definition of a stochastic process, i.e. a
one-parameter family of measurable functions. Ev-
ery chaotic variable is, likewise, a random variable.
However, without the aid of the definition of ran-
dom selection, the reverse is not true in any useful
sense. The problem still lies with the fact that there
is no universally accepted way of defining random
selection within the framework of the foundations of
mathematics. Chaotic processes need not be sam-
pled randomly, and so we avoid this issue when we
are dealing with chaotic processes.

We now define every chaotic process we have
discussed as a stochastic process, and retain a sin-
gle formalism, stochastic processes, within which to
discusses these processes. This requires extending
the boundaries of stochastic processes to include
these processes more directly. Doing this does
not limit our formalism. Rather, it provides new
avenues for exploration. Traditional stochastic
processes is bound to consider only the evolution
of processes which are idealizations such as white
noise, whereas the extension to chaotic processes
calls for an examination of imprefect processes; our
objective being to exploit these imprefections to
improve interpolation, filtering, and prediction of
complex phenomona.

As noted in Sec. 2, a superposition of time-
series of chaotic dynamical systems leads us to
chaotic processes, which, based on our discussion,
we will now refer to as stochastic processes. An
interesting conclusion of our constructions is that
every chaotic dynamical system leads us to a
stochastic process in precisely the manner of our
example. In fact, each chaotic dynamical system
leads us to an array of stochastic processes that
range from noise processes to diffusion processes.
Our example using the logistic map illustrated this.
In an upcoming paper we will explore the formation
of stochastic processes from a wide range of chaotic
systems further. For now, we observe that given a
chaotic dynamical system such as is defined by the
Hénon map, there is a noise process and a diffussion
process that arises from this system. Likewise we
have processes based on the Chua circuit, and the
Chirikov map. Appropriately enough, we will call
these stochastic processes, Hénon processes, Chua
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processes, etc. As these systems define an array of
processes, we will single out two for which we will
have special names: Noise processes and Diffusion
processes. Thus, for the Chua processes, we have
Chua noise, and Chua diffusion. For the Hénon
processes, we have Hénon noise and Hénon diffu-
sion, and so forth.

The significance of these processes is that if
while examining a complex phenomona in a noisy
environment, it can be determined that the under-
lying noise is Chua noise, for example, there may
be some advantages obtained in the filtering and
prediction of the phenomona.

9.2. Six conjectures

Whether or not a Theory of Chaos is possible is
unanswerable at present. However, we set forth six
conjectures, based on our examples and counterex-
amples in the hope that these conjectures may help
lead to a theory eventually.

Conjecture 1. The spatial and temporal complex-
ity which arises from chaotic dynamics has a special
significance in that it is both the source of creative
processes and the source of disorder.

Conjecture 2. Stochastic processes arise in na-
ture from chaotic time-series in at least two ways:
One is when the time-series is sampled in expo-
nential time, or is time-compressed exponentially.
The formation of stochastic processes also proceeds
through the superposition of a large class chaotic
time-series.

Conjecture 3. The imprefect stochastic processes
formed by chaos can correlate with noncomplex pro-
cesses to create stochastic resonances.

Conjecture 4. Chaotic time-series arise from
nonlinear interactions which can be as simple as the
composition of two period-two nonlinear dynamical
systems. This is demonstrated by the Henon map
and many other systems.

Conjecture 5. Pure chaotic systems may be clas-
sified into three categories: Demiurgic systems,
Bernoulli systems and regenerative systems. We re-
fer to the system illustrated by Example 2 of [Brown
& Chua, 1997] as regenerative since, while it does
not have a positive Lyapunov exponent, it does have
a negative Lyapunov exponent that is generating

complexity in a dimension separate from the sub-
space of the negative Lyapunov exponent. Hybrid
systems are combinations of these, or have subseries
of these embedded in their time series. These sub-
series may be spread very thin through the seires so
long as they form a true infinite subseries. All such
systems are examples of chaos.

Conjecture 6. A chaotic time-series may appear
as a stochastic process depending on the sampling
frequency used to measure the time-series. Further,
periodic processes may appear chaotic depending on
the sampling frequency.

10. Prime Numbers in Dynamics

This section is unrelated to the first and is included
to show that there may be a link between prime
numbers and chaos.

In this section we prove three theorems
showing that the prime numbers can be used to ap-
proximate complex sequences defined by symbolic
dynamics. The first theorem is proven in detail and
provides an example of how to prove the later the-
orems which are only sketched. All theorems are
sufficiently simple and straight-forward that they
are likely already known, at least, informally. We
hope that we have not inadvertently omitted credit
to the proper authors.

Theorem 1. The set of rational numbers of the
form p/q, where p and q are primes, p > q, is dense
in the interval [0, 1].

Proof. We show that these rationals are dense in
the rationals in [0, 1].

Let pn be the sequence of prime numbers. From
number theory, see [Hasse, 1980], we know that
pn+1−pn < pγn, where 0.5 < γ < 1. Define the func-
tion p+(n) as the first prime above n, and p−(n) as
the first prime below n. Let a/b be a rational num-
ber in [0, 1].

We have the estimate:

∣∣∣∣a · nb · n −
p+(a · n)

p+(b · n)

∣∣∣∣ =

∣∣∣∣a · n · p+(b · n) − b · n · p+(a · n)

n · b · p+(b · n)

∣∣∣∣
a · n · p+(b · n)− p+(a · n)p+(b · n)

≤

∣∣∣∣∣∣∣∣∣
+p+(a · n)p+(b · n)− p+(a · n)b · n

n · b · p+(b · n)

∣∣∣∣∣∣∣∣∣
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≤
∣∣∣∣a · n · p+(b · n)− p+(a · n)p+(b · n)

n · b · p+(b · n)

∣∣∣∣
+

∣∣∣∣p+(a · n)p+(b · n)− p+(a · n)b · n
n · b · p+(b · n)

∣∣∣∣
≤
∣∣∣∣p+(b · n)

a · n− p+(a · n)

n · b · p+(b · n)

∣∣∣∣
+

∣∣∣∣p+(a · n)
p+(b · n)− b · n
n · b · p+(b · n)

∣∣∣∣
≤
∣∣∣∣a · n− p+(a · n)

n · b

∣∣∣∣
+

∣∣∣∣p+(a · n)
p+(b · n)− b · n
n · b · p+(b · n)

∣∣∣∣
≤
∣∣∣∣a · n− p+(a · n)

n · b

∣∣∣∣
+

∣∣∣∣p+(b · n)
p+(b · n)− b · n
n · b · p+(b · n)

∣∣∣∣
since p+(b · n) ≥ p+(a · n).

∣∣∣∣a · n− p+(a · n)

n · b

∣∣∣∣+

∣∣∣∣p+(b · n)
p+(b · n)− b · n
n · b · p+(b · n)

∣∣∣∣
=

∣∣∣∣a · n− p+(a · n)

n · b

∣∣∣∣+

∣∣∣∣p+(b · n)− b · n
n · b

∣∣∣∣
≤
∣∣∣∣p+(a · n)− p−(a · n)

n · b

∣∣∣∣+ ∣∣∣∣p+(b · n)− p−(b · n)

n · b

∣∣∣∣
≤
∣∣∣∣p−(a · n)γ

n · b

∣∣∣∣+

∣∣∣∣p−(b · n)γ

n · b

∣∣∣∣
≤
∣∣∣∣ (a · n)γ

n · b

∣∣∣∣+

∣∣∣∣ (b · n)γ

n · b

∣∣∣∣
≤
∣∣∣∣ (b · n)γ

n · b

∣∣∣∣+ ∣∣∣∣ (b · n)γ

n · b

∣∣∣∣
= 2

∣∣∣∣ (b · n)γ

n · b

∣∣∣∣
= 2(b · n)γ−1 → 0

as n→∞, since γ < 1. �

If n is an integer and we place a decimal point
to the left of n, we obtain a number in the interval
[0, 1]. For example, if n = 76532 then the number in
[0, 1] we get is 0.76532. This number defines many
more fractions by considering all of its right shifts,
i.e. 0.076532, 0.0076532, 0.00076532, . . . . The set of
all such numbers formed from integers in this way

is clearly dense in [0, 1]. We may formally describe
this set, N , as follows:

For some integer n, and some integer k > 2,

N =

{
x|x =

n

10[(log10 n)]+k

}
where [y] is the integer part of y.

Using this fact we have the following less obvi-
ous theorem:

Theorem 2. The set

P =

{
x|x =

p

10[(log10 p)]+k

}
where p is prime, and k ≥ 2 is dense in [0, 1].

The proof of this theorem follows from the fol-
lowing result:

Theorem 3. Let n be any integer. Then there is a
prime number whose leading digits are the same as
those of n.

Proof of Theorem 3. Let k = n 103[log10 n]. There ex-
ist a prime no further away from k than y = [k2/3].
Any number less than y+k and greater than k will
have the digits of n as its first 10[log10 n]+1 digits.
Since the set N is dense in [0, 1], so is P. �

These results show that prime numbers may
possibly play a role in dynamics. First, since the
ratios of primes are dense in the rational numbers,
demiurgic chaotic systems, [Brown & Chua, 1997],
can generate complex orbits from the prime ratios.
Second, since any irrational number having positive
algorithmic complexity can be approximated by the
elements of P to any desired degree of accuracy, the
complexity inherent in any finite sequence of digits
is already present in some prime number.
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