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Abstract. Biological and social sciences are hard pressed to apply the laws of Newton
due to the multiplicity of parameters affecting the dynamics of such systems; hence the
reliance on statistical methods. However, statistical methods do not predict cause-effect
relationships. Rather, statistics provides correlations between dynamics of populations.
There is a need for a ”calculus” that can be used to predict causal relationships in biological
and social systems that is based on the operative factors of these systems: complexity.

Complexity has been extensively analyzed by mathematicians and definitively explained

by Smale [1,2] through the use of the horseshoe paradigm. The essence of this paradigm is

that complexity arises, in its simplest form, from the operation of two dynamics: Stretch-

ing and folding. By devising a ”calculus” based on stretching and folding we may be better

positioned to predict causal relationships in the biological and social sciences. The value

of a calculus of stretching and folding to biological and social systems to derive dynam-

ical systems has been presented in [2,3,4,5,6,7]. The calculus of stretching and folding is

mathematically formulated in the concept of an infinitesimal diffeomorphism (ID), [4]. In

this paper I present a survey of the presently known properties of IDs.
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1 Introduction: How does the study of IDs as-
sist and advance the work of other scientific
enterprises?

Infinitesimal diffeomorphisms (IDs) [4] are transformations on a manifold
that can closely approximate the solution of a differential equation. How-
ever, they are a legitimate subject of analysis in their own right due to (1)
their potential application in the biological and social sciences as seen in [7];
(2) their use in the numerical approximation of the solutions of ODEs; (3)
their use as closed form diffeomorphisms having complex dynamics that are
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equivalent to such systems as that of Chua, Lorenz and Rössler thus facili-
tating the direct study of such systems without the need of ODEs; (4) their
independence from the laws of physics; (5) their use in modeling and simu-
lation of large complex systems that presently require hundreds of ODEs to
simulate and study; (6) their use in understanding the dynamics of complex-
ity; (7) their use in constructing morphologically equivalent systems that can
be expressed in closed form in terms of elementary functions. In this respec-
t they provide morphological solutions of ODEs which cannot be solved in
closed form in terms of elementary functions, or require conventional numer-
ical methods to solve. For example, there is no closed form solution of the
forced Duffing’s equation in terms of elementary functions; however, there
is an ID solution in terms of elementary functions. (8) Statistical methods
and even Stochastic Differential Equations only provide probabilistic corre-
lations between dynamical parameters whereas IDs provide cause and effect
relationships between parameters.

The importance of IDs to the study of the morphology of systems is made
clear by the human EEG [2]: it is the morphology that determines nor-
mal versus clinical status of a human brain. Further, as is demonstrated in
evolution, when chaotic systems and events unfold, they only rely on the oc-
currence of a frequency component rather than the order of occurrence of the
frequency component in the dynamic of a phenomena or process. This is the
morphology of natural systems. Morphology is nature’s way of eliminating
the importance of the specificity of the initial conditions in the origination
of the dynamics of chaotic or complex process or events. For example, it is
well-known that chaotic processes have sensitive dependence on initial con-
dition while still having the same Fourier spectrum. This means that the
exact initial conditions are not relevant so long as they are not too far a-
part, because all chaotic processes which start in a neighborhood of each
other lead to the same morphological dynamic. This is the fact that biologi-
cal and social dynamics depend on for their time evolution: some degree of
independence from the initial conditions and the unfolding of the relevant
components in any order, which may be random. The example of the to-
bacco mosaic virus provides a metaphor. If the virus is decomposed into its
components and then place in a test tube, it can reassemble itself. Clearly,
the order/arrangement in which the components appear in the liquid are not
important, but only that they are present and available for a random process
to facilitate the reassembly of the virus. IDs provide very direct insight into
the morphology of the dynamics of any system. (9) The ”laws” on which
social and biological systems depend to facilitate the formation of any degree
of complexity are stretching and folding. IDs are specifically formulated from
these two dynamics and are thus ideally suited to study the morphological
dynamics of complex systems. (10) Within the natural world, processes may
transition over time from forces that are continuous to forces that become
more discrete. IDs can provide the ability to study the dynamics of transition
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between continuous and discrete, ore even impulsive systems. This study is
facilitated by increasing the parameter h of an ID from a small number such
as 0.001 to 6.0. This transition is illustrated in Figure 1 for the Simple Scroll
[5].

Figure 1: Simple Scroll Transition from Continuous to Discrete

To summarize, IDs are based on the fundamental complexity dynamics of
biological and social systems rather than the laws of Newton; IDs can be
used to predict the dynamics of systems rather than describe the correlation
between systems; IDs provide significant computational compression for the
formulation of complex biological theories; IDs, for a large class of ODEs of
interest to the biological and social sciences, provide very accurate approx-
imations of the solutions of ODEs; IDs are an extension of the concept of
dynamical synthesis [8]; IDs are formulated in terms of elementary functions
thus allowing for simplicity in modeling, simulation and programming. IDs
are formulated as closed-form diffeomorphisms.
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2 Stretching and Folding Preliminaries: The
Algorithmic Mechanisms, Axioms and Ex-
amples

In this section we will cover three preliminaries that will be of use later in
the text: (1) How the mechanism of stretching and folding appears algorith-
mically, (2) Four Axioms for IDs; (3) Two contrasting examples.

2.1 The Algorithmic Form of Stretching and Folding

The Hirsch Conjecture [3] brought attention to the importance of being able
to recognize the ”form” of stretching and folding as it occurs in a mathemat-
ical expression. I will illustrate the algorithmic mechanism of stretching and
folding by use of the Henon map. I have modified the Henon map by remov-
ing the 1 since is has no bearing on the stretching dynamic [4]. I list the
stretching and folding dynamics separately for clarity. The initial condition
is the fixed point (1, 1), See Fig 2

T
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y

)
=
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x− 2y2

y

)
, Stretching (1)
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y

)
=
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0 1
−1 0

)(
x
y

)
, Folding (2)

Figure 2: Stretching and folding in the modified Henon map

In Fig.(2) the nonlinear dynamic, Eq.(1), moves a point to the left by an
amount related to the magnitude of the y axis coordinate. As y increases, the
shift becomes larger creating a shearing effect between to y-levels, see Fig.(3)
The folding dynamic Eq. (2) simply rotates a point back in the opposite
direction. At a fixed point (1, 1), these two dynamics exactly cancel each
other. The complexity of the fixed point is suggested by the lateral direction
of the stretching dynamic combined with the somewhat vertical direction of
the folding dynamic. If these two dynamics are properly synchronized, it is
apparent that the fixed point will be hyperbolic. If not, the fixed point could



Infinitesimal Diffeomorphisms 203

be elliptic or another fixed point type. What is revealed here is how the
action of stretching and folding combine to produce complex dynamics.

Figure 3: Shearing from Eq.(1) in the Modified Henon Map

2.2 Axioms for IDs

An infinitesimal diffeomorphismTh is a parameterized family of smooth map-
pings on Rn having the following properties for all X ∈ Rn

A1 ∥Th(X)∥ ≤ M · ∥X∥ ∀h 0 < h ≤ 1
A2 T0(X) = X
A3 ∥Th(X)−X∥ ≤ h ·M · ∥X∥
A4 det(JTh(X)) > 0

Axioms for Infinitesimal Diffeomorphisms

Axiom A1 says that T enjoys a property common to linear transformations;
axiom A3 says that for small h, T only moves a point a very short distance,
hence the name ”Infinitesimal Diffeomorphism”, axiom A4 says that an ID
is orientation preserving as are the solutions of ODEs

Typically for the most common applications, h may be thought of as the time
variable. For small h, Tn

h(X) forms an ordered set that closely resembles the
orbit of the solution of an ODE since, by axiom A3, h may be chosen in order
that two consecutive points in the set are arbitrarily close [4]. When an ID is
derived from an ODE, the ID provides a very accurate approximation of the
solution of the ODE [4]. Also, as seen in [7], IDs can be used to model brain
dynamics and to obtain significant computational compression in biological
models.

In addition to the above axioms it is useful to have a reference to the ”Ad-
dition” Axiom

A5 Tn
h = Tn·h

This axiom applies to elementary IDs and the solution of ODEs but not to
IDs in general.
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2.3 A Homogeneous and Inhomogeneous Example

The Homogeneous Case

Th(X) = exp(B · h)X (3)

where

B =

(
0 1
−1 0

)
, X ∈ Rn. (4)

Note that Axiom A5 applies.

The Inhomogeneous Case

Th

(
X
z

)
=

(
exp(B · h)(X−G(z))

z

)
+

(
G(z)
h

)
(5)

where G : R → RnThis can also be written as

Th

(
X
z

)
=

(
exp(B · h)X

z

)
+

(
(I− exp(B · h))G(z)

h

)
(6)

In the inhomogeneous example, the variable z acts like a time variable. Also,
Axiom A5 does not apply.

3 Examples of Infinitesimal Diffeomorphisms
of Well-known ”Chaotic” ODEs

Example 1: Ueda’s equation

ẍ+ αẋ+ x3 = b cos(t) (7)

where α = 0.05, b = 7.5. The objective is to produce a strange attractor
using an ID derived from this ODE. First rewrite the equation as a first
order two-dimensional system:(

ẋ
ẏ

)
=

(
y

−α · y − x3 + b cos(t)

)
(8)

At this point, the time varying forcing function is omitted to get.(
ẋ
ẏ

)
=

(
y

−α · y − x3

)
(9)

Assuming we are only looking at a very small arc over time h RHS is written
as (

ẋ
ẏ

)
=

(
0 1

−x2 −α

)(
x
y

)
(10)
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Assume for small h a solution of the form(
x(h)
y(h)

)
= exp

(
h ·

(
0 1

−x2
0 −α

))(
x0

y0

)
(11)

Now rewrite the matrix on the RHS as

exp

(
h ·

(
0 1

−x2
0 −α

))
= exp

(
h ·

(
0 1

−x2
0 0

)
+ h ·

(
0 0
0 −α

))
(12)

Breaking this down further we get

exp

(
h ·

(
0 1

−x2
0 −α

))
= exp

(
h ·

(
0 1

−x2
0 0

))
· exp

(
h ·

(
0 0
0 −α

))
(13)

which is

= exp(−α · h) exp
(
h ·

(
0 1

−x2
0 0

))
(14)

= exp(−α · h)
(

cos(h · x0) sin(h · x0)/x0

−x0 · sin(h · x0) cos(h · x0)

)
(15)

x(h) ≈ exp(−α · h)(x0 · cos(h · x0) + y0 · sin(h · x0)/x0 (16)

y(h) ≈ exp(−α · h)(y0 · cos(h · x0)− x2
0 · sin(h · x0) (17)

Changing notation and putting the forcing function back into the equation
we get

xn+1 ≈ exp(−α · h)(xn · cos(h · xn) + yn · sin(h · xn)/xn)

yn+1 ≈ exp(−α · h)(yn · cos(h · xn)− x2
n · sin(h · xn)) + b cos(n · h)

To obtain a morphologically equivalent attractor we set α = 0.245 and b =
7.5, see Fig,(4)

Example 2: van der Pol

The ODE
ẍ+ α · (c− x2) · ẋ+ x = a · sin(ω · t) (18)

Using similar methods as above we derive the ID for the van der Pol equation:

xn+1 ≈ exp(α · h · (c− x2
n))(xn · cos(h) + yn · sin(ω · h))

yn+1 ≈ exp(α · h · (c− x2
n))((yn − b sin(β · n · h)) · cos(h)− xn · sin(ω · h)) + b sin(β · n · h)

A strange attractor for the van der Pol ID is obtained by using α = 0.5,
b = 3.2, c = 0.2, ω = 0.3. β = 0.55 h = 2π/(4000β) Fig,(5)
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Figure 4: Ueda’s Attractor

Example 3: Variation on the Double Pendulum

The ODE
ẍ+ (α · ẋ− x) + x3 = a · sin(ω · t) (19)

Using similar methods as above we derive the ID being careful to group the
folding and stretching terms together as seen in the equation grouping:

ex1 = (1− exp(−α · h))/α
ex2 = c− exp(−α · h)

xn+1 ≈ xn · cos(h · xn) + yn · ex2 · sin(h · xn)/xn + ex1 · sin(h · xn)

yn+1 ≈ ex1 · yn · cos(h · xn)− x2
n · sin(h · xn) +

ex1 · xn · cos(h · xn)n + b sin(n · h)

A strange attractor for the ID is obtained by using α = 8.0, b = 5.5, c = 1.95,
h = 2π/(1000) Fig,(6)

Example 4: Morphological Equivalent to the Chua Double Scroll
The dimensionless form of Chua’s equations are given by [12]:

ẋ = α (y − x− f(x))

ẏ = x− y − z (20)

ż = −βy
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Figure 5: van der Pol Attractor

where,

f(x) =

 bx+ a− b for x ≥ 1.0
ax for |x| ≤ 1.0
bx− a+ b for x ≤ 1.0

(2)

is a three segment piecewise linear function and α, β are dimensionless pa-
rameters. By the methods used above and in [5] we derive the ”Chua” ID

xn+1 = exp(α · h) · ((xn − f(u)) · cos(ω · h) + yn · sin(ω · h)) + f(u)

yn+1 = exp(α · h) · (yn · cos(ω · h)− (xn − f(u)) · sin(ω · h))
zn+1 = exp(β · f(u) · h) · (zn − c) + c

where f(u) = sin(u) + sin(3 · u)/3, u = x− 3 · z.

4 The Elementary Stretching Infinitesimal D-
iffeomorphisms

Stretching and folding are fundamental to the theory of IDs. Folding dynam-
ics are typically provided by the solutions of linear, autonomous ODEs with
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Figure 6: Double Pendulum Attractor

constant coefficients [3] or some form of periodic or almost periodic function.
In this section we present four elementary stretching IDs which are related
to the solutions of ODEs. To derive the association to ODEs, association we
first prove a lemma that tells us when a family of maps solves an ODE [8].

Lemma 1 Let g(x0, t) be a one-parameter family of maps, x0 → g(x0, ·)
from Rn to Rn with the following properties:

(1) For each x0 ∈ Rn, the function x(t) = g(x0, t) is differentiable with
respect to t.

(1) g(x0, 0) = x0, for all x0.

(2)

ẋ =
∂g(x0, t)

∂t

exists for all (x0, t).

(2)g−1(x0, t) exists for every t.

Then for fixed x0, the function x(t) = g(x0, t) solves the initial value
problem:

ẋ =
∂g(g−1(x, t), t)

∂t
x(0) = x0 (21)

Proof: Since g−1(x, t) = x0 for all t we have

ẋ =
∂g(x0, t)

∂t
=

∂g(g−1(x, t), t)

∂t

EXAMPLE: Let n = 1 and x(t) = g(x0, t) = x0 exp(t). Then for
fixed t, g−1(u, t) = u exp(−t). Hence, ẋ = x0 exp(t) = g−1(x, t) exp(t) =
x exp(−t) exp(t) = x.
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Figure 7: Morphological Equivalent of the Chua Double Scroll

The elementary ID is given by Th(x) = exp(h) · x

EXAMPLE: Let(
x(t)
y(t)

)
=

(
x0 exp(t)

y0 − f(x0) + f(x0 exp(t))

)
Then ẋ = x and ẏ = f ′(x) ẋ. The invertibility requirement means that
the initial conditions, (x0, y0) can be eliminated from the equation for the
derivative and thus we can obtain an equation between the function and its
derivative having no arbitrary constants.

The elementary ID is given by

Th

(
x
y

)
=

(
x exp(h)

y − f(x) + f(x exp(h))

)
Lemma 2 Given a one-parameter family of maps, g(x0, t), satisfying the
conditions of lemma 1 above and for which

∂g

∂t
(g−1(x, t), t)

is independent of t, then for t = h, the map Th(X) = g(X, h) is an ID.
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Proof: : The ID arises from the solution of an ODE:

ẋ =
∂g

∂t
(g−1(x, t), t)

.

Let us extend this idea to a finite number of maps satisfying the conditions
of lemma 2. In the following lemma, for convenience we use the notation
Th =def T(h)

Lemma 3 Given maps T1(h),T2(h), . . . ,Tn(h) each satisfying the condi-
tions of lemma 2 the composition of these maps form a ID.

Proof: The proof consists in applying the definition of ID.

4.1 Example: The Henon Map ID in Three Dimensions

We now apply these ideas to construct an ID which generates the Henon Map
Attractor following [8].

Lemma 4 (The Henon map)
Consider the map,

x → 1− ax2 + y

y → b · x

where a, b are constants. There exist an ID which generates the Henon At-
tractor.

Proof:
The preceding lemmas say that if we are able to factor this map into a

composition of maps, each of which is an ID, then their composition is an
ID.

We construct this factorization into IDs explicitly along with the one-
parameter family of maps, g(x0, t), and the ODEs:

1 The factors of the Henon Map:

T1

(
x
y

)
=

(
y
−x

)

T2

(
x
y

)
=

(
x+ 1− ay2

y

)

T3

(
x
y

)
=

(
x
by

)



Infinitesimal Diffeomorphisms 211

2 The IDs that are derived from these factors

T1(h)

(
x
y

)
=

(
cos(πh/2) sin(πh/2)
− sin(πh/2) cos(πh/2)

)(
x
y

)

T2(h)

(
x
y

)
=

(
x+ (1− ay2)h

y

)

T3(h)

(
x
y

)
=

(
x

exp(αh) · y

)
3 Three-dimensional Embedding of the Henon Map:

T1(h)

 x
y
z

 = 0.5

 1 + cos(πh) 1− cos(πh)
√
2 sin(πh)

1− cos(πh) 1 + cos(πh) −
√
2 sin(πh)

−
√
2 sin(πh)

√
2 sin(πh) 2 cos(πh)

 x
y
z



T2(h)

 x
y
z

 =

 x+ (1− ay2)h
y
z



T3(h)

 x
y
z

 =

 x
exp(αh)y

z


For any chaotic two-dimensional map to be an ID it is necessary to embed

the map into three-dimensional space. By choosing a = 1.4, b = 0.3, t = 1
and z = 0.0 we obtain the familiar Henon attractor in three-dimensional
space, [8].

Note that the composition of a finite number of elementary IDs having the
same parameter, h, is an ID of parameter h. Also note that an elementary
ID, Th, satisfies Axiom A5, hence

Th ◦Th = T2h

Proof is obvious.

4.2 Applying the Method of Dynamical Synthesis Pro-
vides the Derivation of Four Elementary Stretching
IDs

In this section, we follow the development in [8]. As our focus is to treat IDs
that produce complex dynamics, we present four elementary shearing IDs.
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The significance of shearing is that it is a form of stretching as was noted
in Sec.(2) and it is also a force of nature in both the social and physical
sciences. Combining shearing with folding we can obtain all of the commonly
recognized chaotic maps such as Henon or Chirikov as was demonstrated in
[8]. For example, the Henon map above was decomposed into a shearing force
combined with two folding forces.

Lemma 5 (Twist and Shift ID Lemma) Let

Tt

(
x
y

)
=

(
x

f(x, y, t)

)
be a one parameter family of C∞ invertible maps of R2 such that the following
is true:

(1) Ts+t = Ts ◦ Tt, T0 = I, the identity map, and T−1
t = T−t;

(2) det(D(Tt)) = 1 for all t.

Then

Tt

(
x
y

)
=

(
x

y +Ω(x) t

)
and Tt is a one-parameter group of twist maps.

Proof: see [8] From this lemma we get the Twist ID:

Th

(
x
y

)
=

(
x

y +Ω(x)h

)

The Dilation/Contraction IDs

Proposition 1 (Dilation/Contraction) Let

Tt

(
x
y

)
=

(
x

f(x, y, t)

)
be a one parameter family of C∞ invertible maps of R2 such that the following
is true:
(1) Ts+t = Ts ◦ Tt, T0 = I, the identity map, and T−1

t = T−t;

(2) det(D(Tt)) = exp(g(x, y, t)) > 0 for all x, y, t.

Then

Tt

(
x
y

)
=

(
x

y exp(Ω(x) t) + c(x)(exp(Ω(x) t)− 1)/Ω(x)

)
where c(x) and Ω(x) are C∞ functions of x and Tt is a one parameter group
of dilation/contraction maps. If we are to have this family to be the simplest
possible, then c(x) = 0.



Infinitesimal Diffeomorphisms 213

Proof: For proof see [8]

The dilation/contraction ID is given by

Th

(
x
y

)
=

(
x

y exp(Ω(x)h) + c(x)(exp(Ω(x)h)− 1)/Ω(x)

)
For related discussion see [8].

Let h = 1/N then for an elementary ID T we have

T
1/h
h = TN

h = TN ·h = T1

More complex IDs are derived using the elementary IDs. For example,

Definition 1 Linear Infinitesimal Diffeomorphism
Th is a linear infinitesimal diffeomorphism (ID) if there exist a bounded G
such that

Th(X) = exp(A · h)(X−G(X)) +G(X)

where G : Rn → Rn, X ∈ Rn, A is an n by n matrix of constants.

Note that
∥Th(X)−X∥ ≤ M · h

Given an elementary stretching ID Th, we may construct a more complex
ID as follows:

X → Th(X−G(X)) +G(X)

In the above example, the stretching comes from the elementary ID and fold-
ing arises from the term G(X). In many cases G(X) is a periodic function. It
is possible to reverse this order. For example, in the following case stretching
is provided by the term G(X):

exp(A · h)(X−G(X)) +G(X)

where A is a constant matrix.

In general, in an ODE, stretching is indicated by the initial conditions oc-
curring nonlinearly in the solution [9, 11]. To make this clear

x0 · cos(t)

is a linear occurrence of an initial condition in part of a solution to an ODE
whereas the initial condition appears nonlinearly in the following term in the
solution of an ODE:

x0 · cos(x0 · t)
It is clear that we can construct an ID having a term such as x ·cos(x ·h) that
is not a part of a solution of an ODE. The occurrence of such a stretching
term only needs to make sense for the application.
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5 IDs are more General than ODEs

To illustrate the generality of IDs we impose the condition that the Diffeo-
morphism be measure preserving.

For the conventional linear case f(t) = exp(A · t)X0 the ID is given by
the mapping Th(X) = exp(A · h)X, where X is a vector and A is an n by n
matrix. If the solution of the ODE is bounded, then the ID is a very good
approximation for even very large h. For h = 1 we obtain a finite difference
equation.

Consider the following equation:(
x
y

)
→

(
x · cos(h) + y · sin(h) · f(x, y)

y · cos(h)− x · sin(h)

)
(22)

For f = 1 we have the familiar Linear ID that will approximate the solution
to the corresponding ODE. To see how to obtain a much larger range of IDs
we require that Det(J(T))=1 then we derive the first order PDE

cos2(h) + y cos(h) sin(h)fx + sin2(h)(f + yfy) = 1 (23)

Changing notation to make the equations clear and correspond to conven-
tional solution methods we have

cos2(h) + y cos(h) sin(h) · zx + sin2(h)(z + yzy) = 1 (24)

this gives
y cos(h) sin(h) · zx + sin2(h) · z + sin2(h) · y · zy = sin2(h) (25)

y cos(h) sin(h) · zx + sin2(h) · y · zy = sin2(h)− sin2(h) · z (26)

y cos(h) · zx + sin(h) · y · zy = sin(h)(1− z) (27)

The solution of this PDE is derived from the relations

dx

y cos(h)
=

dy

y sin(h)
=

dz

sin(h)(1− z)
(28)

from which we obtain F (x sin(h)− y cos(h), (1− z) · y) = 0, where F is any
arbitrary function of two variables.

Choosing F (x, y) = x sin(h)− y cos(h) + (1− z) · y = 0 and solving for z
we get

z =
x sin(h) + y · (1− cos(h))

y

Substituting this into Eq.( 22) we get(
x
y

)
→

(
(cos(h) + sin2(h)) · x+ sin(h)(1− cos(h)) · y

y · cos(h)− x · sin(h)

)
(29)

In practice, F is determined by ”boundary conditions” whereas here I have
only presented a simple example to illustrate the ideas. To see that this ID
does not come from the solution of an ODE note that Axiom A5 violated:

T2
h(X) ̸= T2·h(X)
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6 Generalizations of the Example

In this section we present two ideas. (1) IDs can arise from first order PDEs;
(2) When using IDs to solve ODEs, it is possible to incorporate first integrals
of the ODE to simplify the PDEs.

6.1 An ID, like the solution of a PDE, may contain one
or more arbitrary functions

Consider

T

(
x
y

)
=

(
x · cos(h) + y · sin(h) · f(x, y)
y · cos(h)− x · sin(h) · g(x, y)

)
(30)

By requiring that the ID satisfy Axiom A5, we can simplify because Axiom
A5 implies that f · g = 1. The requirement that Det (J(T))=1 imposes
conditions on f which produce a PDE for f .

Det(J(T)) = (cos(h) + y · sin(h) · fx)(cos(h)− x · sin(h) · gy) +
(sin(h) · g + x · sin(h) · gx)(sin(h) · f + y · sin(h) · fy) (31)

= cos2(h) + sin2(h) · f · g + sin2(h) · x · y(̇fx · gy − fy · gx) +
sin(h) cos(h)(y · fx − x · gy) + sin2(h) · (y · g · fy + x · f · gx) (32)

= 1 (33)

Note that
gy · fx − fy · gx = 0

Det(J(T)) =

1 + sin(h) cos(h)(y · fx − x · gy) +
+ sin2(h) · (y · g · fy + x · f · gx) = 1 (34)

or, simplifying further

cos(h) · (y · fx − x · gy) + sin(h) · (y · g · fy + x · f · gx) = 0 (35)

Since g · f = 1, one possible solution of this PDE gives the ID

T

(
x
y

)
→

(
x · cos(h) + y · sin(h) · r
y · cos(h)− x · sin(h)/r

)
(36)

Where r2 = 0.5(x2 +
√
x4 + 4y2) as seen in [9], Sec. 5.2. Equation (36) is a

nonlinear autonomous ID that arises from an nonlinear autonomous ODE as
seen in [9], sec. 5.2. If we do not impose the addition Axion, A5, condition,
then a broader range of IDs are obtained. In general, autonomous IDs contain
the initial conditions and h with no time variable, and possibly an arbitrary
function (to be illustrated later) that is determined by the conditions of the
problem to be solved.
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6.2 Using a First Integral as a Boundary Condition on
the PDEs

Consider

Ẋ = F (X) X(0) = X0

and assume that there is an invariant function G(X) = G(X0), or first in-
tegral, for Ẋ. Then this relationship can be used in Eq.(30) to place con-
straints on the system of PDEs that arise from Det(J(T)) = 1. In particular
G(T(X)) = G(X).

An alternative form of the general solution, F (x sin(h) − y cos(h), (1 −
z) · y) = 0, of the PDE, from Sec. (5) is (1 − z) · y = g(x sin(h) − y cos(h)).
Solving for z and changing notation and putting this into Eq.(37) we have

(
x
y

)
→

(
x · cos(h) + y · sin(h) · (y + g(x sin(h)− y cos(h))/y

y · cos(h)− x · sin(h)

)
(37)

(
x
y

)
→

(
x · cos(h) + y · sin(h) + sin(h) · g(y cos(h)− x sin(h))

y · cos(h)− x · sin(h)

)
(38)

Note that sign changes have been made that are irrelevant since g is an ar-
bitrary function. In general, IDs may contain an arbitrary function which,
in this case, is eliminated from Eq.(38) by imposing relevant boundary con-
ditions on the problem. If we were to use the first integral x2 + y2 = r2 of
the simple ID as the boundary condition, then we will find that g = 0 and
we recover the simple ID Eq.(39)(

x
y

)
→

(
x · cos(h) + y · sin(h))
y · cos(h)− x · sin(h)

)
(39)

A routine computation shows that for h=0, that Eq.(38) is the identity map
and that it is measure preserving.

7 Linear ODEs with Time Varying Coefficients

Given the equation

Ẋ = A′(t)X (40)

WhereA is a square matrix andX is a vector. Deriving an ID is not as simple
as just substituting h for t. The problem is that A(t)A′(t) ̸= A′(t)A(t) in
general. A common example is the Bessel’s equation of order zero:

t
d2y

dx2
+

dy

dx
+ t · y = 0 (41)
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By substituting a constant for the time variable and solving the linear equa-
tion then re substituting the time variable for the constant provides a simple
ID that is morphologically equivalent to the Bessel equation, Eq.(41):

x → exp(α · h/tn)(x cos(h) + y · sin(h)) (42)

y → exp(α · h/tn)(y · cos(h)− x · sin(h)) (43)

However, it should be expected that the time variable need not occur in the
ID. First two short-hand abbreviations:

u = −h · log(h) (44)

v =
√
h/ log(1 + h) (45)

then the time independent ID is given by Equation (46):(
x
y

)
→

(
cos(u) sin(u) · v

− exp(−α · u) · sin(u) · v exp(−α · u) · cos(u)

)(
x
y

)
(46)

The first approximation ID to Eq. (40) is given by

X → exp(A(h) · h)X (47)

Clearly, this can be generalized and made more precise by the method of Sec.
6

Adding a forcing term can be handled exactly as in the linear nonhomo-
geneous case treated in [4].

8 Basic Algebraic Relationships for Linear IDs
with Constant Coefficients

In addition to the general theory of IDs, there is a need for algebraic relation-
ships that facilitate proofs and simplifications of problems. In this section
the subscript designating the parameter h will be omitted to simplify the
computations. An ID is linear if the component of Axiom A3 solves a linear
ODE.

Definition
TG(X) = exp(A · h)(X−G(X)) +G(X) (48)

thenT0(X) = exp(A·h)X, where 0(X) = 0 for allX and SG(X) = X−G(X).

Theorem 1 Sums
Let G,F be mappings from Rn to Rn and (G+F )(X) = G(X)+F (X)) then

TG+F = TG +TF −T0 (49)
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Proof:

TG+F = exp(A · h)(X−G− F )) + (G+ F ) (50)

= exp(A · h)(X−G) +G+ F − exp(A · h)(F ) (51)

= TG + F − exp(A · h)(F ) (52)

= TG + F − exp(A · h)(F ) +T0 −T0 (53)

= TG +TF −T0 (54)

This theorem is easily generalized:

T
∑

Fi =
∑
i

TF i − (n− 1) ·T0

This result allows the decomposition of a very complex sum into smaller
components.

Theorem 2 Compositions
Let G,F be mappings from Rn to Rn and (G ◦ F )(X) = G(F (X)) then

TG◦F = TG(F ) +TF − F (55)

Proof:

TG◦F = T0(SG◦F ) +G ◦ F (56)

= T0(SF + SG(F )) +G ◦ F (57)

= T0(SF ) +T0(SG(F )) +G ◦ F (58)

= T0(SF ) +T0(SG(F )) + F − F +G ◦ F (59)

= T0(SF ) + F +T0(SG(F )) +G ◦ F − F (60)

= TG(F ) +TF − F (61)

Theorem 3 Nonlinearity
Let G be a mapping from Rn to Rn with X,Y ∈ Rn and let Λ(X,Y) =
G(X+Y)− (G(X) +G(Y)) (note that Λ measures the degree to which G is
nonlinear) then

TG(X+Y)− (TG(X) +TG(Y)) = (T0 − I)Λ(X,Y) (62)

Proof: Direct computation.

Theorem 4 Conjugation
Assume TG(A)(X) = exp(A · h)(X−G(X)) +G(X) then

TG(J−1AJ)(X) = J−1TJG(A)(JX) (63)
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Proof: Direct computation.

Theorem 5 Diagonalization
Assume TG(A)(X) = exp(A · h)(X−G(X)) +G(X) where A = D+N and
D ·N = N ·D then

TG(D+N)(X) = T0(N)(TG(D)(X) = T0(D)(TG(N)(X) (64)

Proof: Direct computation. This result and the former apply to expressing
A in Jordan Normal Form.

9 An Inventory of IDs

The following is a listing of the most common IDs. While the form of an ID
can be algorithmically complex, there are two forms that are common. Let
Tt(X0)) be the solution of an ODE with initial condition T0(X0) = X0, then

X → Th(X−G(X)) +G(X)

is an ID for smooth G. Next,

X → Th(X) +H(h,X)

is an ID for smooth H.

Linear Homogeneous ID

Th(X) = exp(A · h)X (65)

Origin
Ẋ = A ·X (66)

Axiom A1 of Sec. (2), requires that the absolute value of the eigenvalues of
A is less than or equal to 1. Clearly, T0 = I.

∥Th(X)−X∥ = ∥ exp(A · h)X−X∥ ≤ ∥A∥ · h (67)

Linear Inhomogeneous

Th(X) = exp(A · h)(X−G(X)) +G(X) (68)

Origin

Ẋ = A · (X−H(X)) +H(X) (69)

Note that H ̸= G but is derived to assure that the ID is morphologically
equivalent to the solution of the ODE.
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Simple Nonlinear Homogeneous

T(X) = exp(f(X)A · h)X (70)

where f is a complex valued function of X. If f is a constant along integral
curves, this ID originates from

Ẋ = f(X)A ·X (71)

Origin The twist equation of [9], Sec. 5.1 is an example.

Simple Nonlinear Inhomogeneous

T(X) = exp(f(X)A · h)(X−G(X)) +G(X) (72)

If f is a constant along integral curves, this ID originates from

Ẋ = f(X)A · (X−H(X)) +H(X) (73)

Origin The square wave Twist and Flip equation from [10], Sec. 3.2 is an
example.

Compound Nonlinear Homogeneous

T(X) = exp(A(X) · h)X (74)

Special case

T(X) = exp(A(f(X)) · h)X (75)

Where f is constant along integral curves.

Origin This ID originates from [9], Sec. 5.2.

Ẋ = A(f(X)) ·X (76)

Compound Nonlinear Inhomogeneous

T(X) = exp(A(X) · h)(X−G(X)) +G(X) (77)

Origin An example is the morphological equivalent of the Chua double scroll,
Fig. (7).

10 Fundamental Conjectures

Conjecture 1 Assume that

Ẋ+
∂A(X, t)

∂t
·X = b(t) (78)

has a unique bounded solution for each initial condition, then there exist an
ID that morphologically approximates the solution of Eq.(78) to any arbitrary
degree of accuracy.
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Guess:

Xn+1 = exp(A(Xn, h) · h)(Xn − b(tn)) + b(tn) (79)

Conjecture 2 Consider the finite difference equation:

∆T(X) = F (T(X)) (80)

There exist an ID which, for h = 1, is equal to T

Conjecture 3 Let T(S,F) be an ID with stretching and folding components
S,F The there exists an algebraic relationship

G(S,F) = 0

which determines when a transverse homoclinic point exists exist for T.

11 Summary

In this paper I have introduced the formal concept of the Infinitesimal dif-
feomorphism. I have discussed why a formal study of Infinitesimal Diffeo-
morphisms as a separate mathematical discipline is important for social and
biological sciences as well as for engineering. Why IDs differ from the solu-
tions of ODEs is presented and why IDs do not rely on the laws of physics
for their formulation and use has been discussed. I note that IDs are based
on the dynamics of complexity, which is stretching and folding and that IDs
provide an avenue to construct morphological equivalent solutions of equa-
tions when the morphology is all that is relevant such as in the case of the
human EEG. Also, IDs provide cause and effect relationships between sys-
tems rather than just correlations as is down by using statistical methods.
Thus IDs provide the potential to efficiently model human systems on a level
that is not possible using ODEs or even PDEs. Unlike FDEs in which a
very large step size is used, IDs provide a variable step size parameter that
allows for simulations of discrete systems to any given level of detail. IDs
can also provide dramatic compression of the algorithms of models that are
based on ODEs because IDs capture dynamics in a manner similar to Gaus-
sian integration. It is shown that IDs are more general than ODEs and thus
more general than systems based on the laws of physics. I have also given
a glimpse of how IDs relate to well known strange attractors in the study of
chaos. A particularly valuable point for modeling and simulation is that IDs
are close-form equations that are expressed in terms of elementary functions.
When an ID is derived from an ODE, the ID can provide a very accurate
approximation of the solution of the ODE even for very large step size. IDs
also provide a more direct window into the complex dynamics of ODEs than
is presently available.
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